
Optimizing Error-Bounded Lossy Compression for
Scientific Data on GPUs

Jiannan Tian?, Sheng Di†, Xiaodong Yu†, Cody Rivera§, Kai Zhao‡, Sian Jin?,
Yunhe Feng¶, Xin Liang‖, Dingwen Tao?, Franck Cappello†

?Washington State University, Pullman, WA, USA
†Argonne National Laboratory, Lemont, IL, USA

‡University of California, Riverside, Riverside, CA, USA
§University of Alabama, Tuscaloosa, AL, USA
¶University of Washington, Seattle, WA, USA

‖Missouri University of Science and Technology, Rolla, MO, USA

Abstract—Error-bounded lossy compression is a critical tech-
nique for significantly reducing scientific data volumes. With
ever-emerging heterogeneous high-performance computing (HPC)
architecture, GPU-accelerated error-bounded compressors (such
as CUSZ and cuZFP) have been developed. However, they suf-
fer from either low performance or low compression ratios. To
this end, we propose CUSZ+ to target both high compression
ratios and throughputs. We identify that data sparsity and data
smoothness are key factors for high compression throughputs. Our
key contributions in this work are fourfold: (1) We propose an
efficient compression workflow to adaptively perform run-length
encoding and/or variable-length encoding. (2) We derive Lorenzo
reconstruction in decompression as multidimensional partial-sum
computation and propose a fine-grained Lorenzo reconstruction
algorithm for GPU architectures. (3) We carefully optimize each
of CUSZ kernels by leveraging state-of-the-art CUDA parallel
primitives. (4) We evaluate CUSZ+ using seven real-world HPC
application datasets on V100 and A100 GPUs. Experiments show
CUSZ+ improves the compression throughputs and ratios by up to
18.4× and 5.3×, respectively, over CUSZ on the tested datasets.

I. INTRODUCTION

Large-scale scientific applications for advanced instruments
produce vast volumes of data every day for post hoc analysis.
For instance, Hardware/Hybrid Accelerated Cosmology Code
(HACC) [1, 2] may produce petabytes of data in hundreds of
snapshots when simulating 1 trillion particles. It could be very
inefficient to store such a large amount of data, especially in
situations with relatively low I/O bandwidth on the parallel file
system (PFS) [3, 4].

Data reduction is becoming an effective method to resolve
the big-data issue for scientific research. Although traditional
lossless data reduction methods such as data deduplication and
lossless compression can guarantee no information loss, they
suffer from limited compression ratios on scientific datasets.
Specifically, deduplication usually reduces the scientific data
size by only 20% to 30% [5], and lossless compression achieves
a compression ratio of up to ∼2:1 [6]. The 2:1 is far lower than
scientists’ desired compression ratios (e.g., 10:1 [7]).

Error-bounded lossy compressors have been developed for
years to address the issue of low compression ratio for scientific

Corresponding author: Dingwen Tao (dingwen.tao@wsu.edu), School of
EECS, Washington State University, Pullman, WA 99164, USA.

data: they can not only get very high compression ratios (such
as over 100×) [3, 8, 9, 10], but strictly control the data dis-
tortion regarding the user-set error bound. Notably, a qualified
lossy compressor designed for scientific data reduction should
address three primary concerns simultaneously: (1) high fidelity
preservation, (2) high compression ratio, and (3) high through-
put. Most of the existing error-bounded lossy compressors
(such as SZ [8, 9], FPZIP [11], ZFP [10]), however, are mainly
designed for CPU architectures, which cannot adapt to the
high throughput requirement. For example, LCLS-II laser [12],
X-ray imaging data generated on advanced instruments, can
result in a data acquisition rate at 250 GB/s [7]. As such, high
compression throughput is critical for storing a tremendous
amount of data efficiently for scientific projects.

Currently, several GPU-based error-controlled lossy com-
pressors (such as CUSZ [13] and cuZFP [14]) have been de-
veloped, but they suffer from either sub-optimal compression
throughputs or low compression ratios. For instance, CUSZ can
achieve much higher compression ratios than cuZFP. Still, its
performance is substantially limited by the Huffman encod-
ing and dictionary encoding stages when compared with the
up-to-date work [15]. However, the high compression ratios
of SZ/CUSZ significantly depend on Huffman encoding and
dictionary encoding because the output of the prediction-and-
quantization step in SZ/CUSZ is often composed of many
repeated symbols.

In this paper, we propose an efficient compression framework
(called CUSZ+) based on the CUSZ framework, which can get
both high compression ratios and high throughputs on GPUs.
The notation “+” in CUSZ+ indicates that this new compres-
sion method is specifically optimized for high performance in
compression and decompression on the latest GPU architecture
(i.e., NVIDIA’s Ampere architecture).

It is challenging to develop an efficient GPU-based error-
bounded lossy compressor that can achieve high compression
ratios and high throughputs at the same time. On the one
hand, to develop efficient GPU code, one must maximize the
parallelism from GPU threads. Moreover, the architecture/char-
acteristics of GPU accelerators (such as coherence, divergence
issues, bank conflicts, use of shared memory, use of regis-

1

dingwen.tao@wsu.edu

ters) must be coped with very carefully to get the optimal
performance. On the other hand, state-of-the-art error-bounded
lossy compressors (such as SZ [3, 8, 9]) often rely on Huff-
man encoding and dictionary encoding, which are procedures
that contain substantial data dependencies. These dependencies
make them very hard to parallelize on GPUs efficiently. For ex-
ample, a Huffman tree must be built based on a code-frequency
histogram before performing Huffman encoding, which has a
significant data dependency inside. The CUSZ code just used
one single GPU thread to do this work for simplicity. Moreover,
it is fairly non-trivial to design an efficient parallel code for the
dictionary encoding because of the intrinsic dependency in its
repeated sequence search. CUSZ leaves this part to CPU, which
may suffer from significant overhead. Our key contributions
proposed particularly in CUSZ+ are summarized as follows.
• We design an adaptive compression workflow to perform

run-length encoding and/or variable-length encoding (i.e.,
Huffman encoding) on GPUs. We exploit a sufficient con-
dition to determine when the run-length encoding should
be applied for improving compression ratio, i.e., when the
average Huffman bit-length is no greater than 1.09.

• We identify and prove that the first-order Lorenzo recon-
struction in decompression is equivalent to a multidimen-
sional partial-sum computation. We propose a fine-grained
Lorenzo reconstruction algorithm based on a multidimen-
sional partial-sum and a modified quantization scheme.
Such a design can fully parallelize the decompression op-
eration with workload tuning of GPU thread, improving the
overall decompression throughput significantly.

• We develop some optimization strategies to boost compres-
sion performance and scalability. For instance, we carefully
optimize each kernel in compression considering CUDA
architecture (e.g., reducing global memory accesses) to im-
prove the compression throughput. We also leverage the
state-of-the-art NVIDIA::cub parallel primitives [16] to en-
hance the decompression scalability and throughput.

• We evaluate CUSZ+ with seven real-world HPC applica-
tion datasets from public Scientific Data Reduction Bench-
marks [17] on two state-of-the-art GPUs–V100 and A100.
Experiments show that CUSZ+ improves the compression
throughputs and ratios by up to 18.4× and 5.3×, respec-
tively, over CUSZ on the tested datasets.

• We conclude that with the advancement of GPU architec-
ture, CUSZ+ can benefit more from the improvement of
memory bandwidth than that of peak FLOPS and provide
valuable insights for software and application R&D toward
the exascale computing era.

II. BACKGROUND AND RESEARCH MOTIVATION

In this section, we introduce the background of CUSZ (the
CUDA version of SZ) [13] and our research motivation.

A. Background of CUSZ

Unlike CPU-based SZ that has only four steps (predic-
tion, quantization, Huffman encoding, and dictionary encod-
ing), CUSZ involves nine steps to adapt to the GPU architec-

ture. Specifically, Step-1 splits the whole dataset into multi-
ple blocks, each of which will be compressed independently.
This design favors coarse-grained decompression. Upon split-
ting blocks, CUSZ’s compression adopts a dual-quantization
scheme (including prequantization1, prediction, and postquanti-
zation), which can entirely remove the data dependency for the
Lorenzo prediction. Then, Step-5 adopts parallel histograming
to compute the frequencies of the quant-codes. Step-6 builds a
canonical Huffman codebook [13] based on the histogram/fre-
quency vector. Step-7 performs the Huffman encoding over
the quant-codes. Step-8 concatenates all the Huffman codes
(called deflating) on GPUs, which feeds a dictionary encoder
(Zstd [18]) for further compression on CPUs in Step-9. The
decompression is the reversed procedure of the compression.
We refer readers to the CUSZ paper [13] for more details.

For compression, Step-6 and -9 are the main bottlenecks be-
cause Step-6 has to be executed sequentially with a single GPU
thread and designing an efficient multi-thread GPU algorithm
for dictionary encoding is non-trivial.

For decompression, the first step (i.e., the reversed dual-
quantization) is the main bottleneck since the decompression
cannot use the massive parallelism as the prequantization step
does. Specifically, in the decompression stage, the data values
must be reconstructed one by one, according to the Lorenzo
predictor2. To address this issue, CUSZ adopts a coarse-grained
parallel method instead: letting one GPU thread handle one
independent data block in parallel. However, such a design
suffers from low performance due to the underuse of massive
parallelism on GPUs. In addition to Step-1, Step-9 is another
significant bottleneck because the dictionary decoding is also
very hard to parallelize on GPUs because of its intrinsic data
dependency.

B. Research Motivations

B.1) Limitation of CUSZ’s Compression Ratio Full-fledged
CPU-based compressors may utilize multifold techniques to
boost the compression ratio: pattern-finding (e.g., BWT, LZ77),
dictionary (e.g., LZ77), and variable-length encoding (“VLE”).
An exemplary combination is DEFLATE (LZ77 and VLE),
whose famous implementation is gzip (used by CPU-SZ). In
comparison, CUSZ, the GPU-based lossy compressor, only
leverages Huffman coding to compress prediction-error correc-
tion codes (i.e., quant-codes). Even though Huffman coding
is a VLE that is optimal in bit-length (i.e., with minimal
discrepancy from the entropy), no less than one bit represents a
data element. Therefore, CUSZ can achieve up to 32× or 64×
of compression ratios. CUSZ disregards the repeated pattern
that may exist in the symbol sequence. Hence, there is a gap
between CUSZ and CPU-SZ in compression ratio due to the
lack of pattern-finding.

1All data items are quantized based on their original values before the data
prediction step.

2Lorenzo predictor predicts the data values based on a high-order data
approximation formula: e.g., X[j,i] ≈ X[j−1,i] + X[j,i−1] − X[j−1,i−1]
for 2D dataset, where X[j,i] refers to the value of the data item [j, i] in the
dataset.

2

HACC Hurricane
qg qh qhg qg qh qhg

1e-2 22.72 20.33 31.02 43.67 24.80 58.76
1.1× 1.0× 1.5× 1.8× 1.0× 2.4×

1e-3 7.58 9.51 10.01 18.41 17.04 24.65
0.8× 1.0× 1.1× 1.1× 1.0× 1.4×

1e-4 3.89 4.82 5.01 10.31 9.76 12.99
0.8× 1.0× 1.0× 1.1× 1.0× 1.3×

CESM Nyx
qg qh qhg qg qh qhg

1e-2 61.21 24.24 75.50 118.94 30.24 164.39
2.5× 1.0× 3.1× 3.9× 1.0× 5.4×

1e-3 20.78 18.38 28.13 28.25 23.92 40.17
1.1× 1.0× 1.5× 1.2× 1.0× 1.7×

1e-4 9.98 10.29 12.50 12.87 15.27 17.95
1.0× 1.0× 1.2× 0.8× 1.0× 1.2×

TABLE I: Averaged compression ratios (per dataset) of different
compression schemes on 109 fields of 4 datasets with 3 error bounds
of 10−2, 10−3, 10−4 (relative to value range). q denotes quant-code as
starting point, h denotes customized variable-length encoding (multi-
byte-symbol Huffman coding), g denotes gzip-featured scheme. “ab”
denotes scheme a precedes scheme b.

TABLE I shows the compression ratio variances by ap-
plying the CUSZ workflow followed by gzip. q, h, g de-
note prediction-quantization, multi-byte Huffman coding, gzip,
respectively, and the letter sequence indicates the order of
processes (e.g., qh indicates that h comes after q). However,
this additional gzip so far does not exist in CUSZ but can
demonstrate the potentially achievable compression ratio by
exploiting the repeated symbol pattern. More specifically, by
changing the error bound from 10−4 to 10−2, Lorenzo predictor
generates the intermediate quant-codes that exhibit stronger re-
peated patterns, as indicated in qh. For example, when changing
from qh to qhg, HACC data shows only a 1.04× improvement
in compression ratio under the error bound of 10−4, while the
compression ratio is improved by 1.52× under the error bound
of 10−2. We use the compression ratio of this qhg as a reference
in the following discussion.

B.2) Limitation of CUSZ’s Decompression Performance
CUSZ follows CPU-SZ’s scheme to sequentially reconstruct the
prediction values in decompression (per data chunk). Specif-
ically, the reconstructed value of one item must rely on its
preceding values that are fully reconstructed. As a result, this
scheme naturally has a sequential implementation because of
data dependency. Moreover, since both CPU-SZ and CUSZ
store the unpredicted data and the prequantized data separately,
it introduces an extra handling step involving if-branch in de-
compression, which impedes fine-grained data parallelization.
In addition, compared to CUSZ’s compression kernel, its de-
compression kernel’s throughput is relatively low [13]. In par-
ticular, the Lorenzo construction kernel can achieve the same
order of magnitude of throughput as memory copy [13], while
the Lorenzo reconstruction kernel has one order of magnitude
less in throughput. All the above prevent CUSZ from broader
use scenarios such as in-situ compression.

B.3) Importance of Lorenzo Predictor The modular design of
SZ enables adaptively adopting various predictors for different
scientific uses. Among all predictors, the first-order Lorenzo
predictor plays an essential role in the SZ framework and is

the default predictor since it achieves relatively low prediction
error in most cases, as proven in prior works [3, 9, 19].

Overall, in this work, we endeavor to significantly boost the
compression ratio and (de)compression performance of CUSZ
(e.g., Lorenzo reconstruction kernel) by developing a series of
optimization techniques to address the above issues.

III. COMPRESSIBILITY-AWARE FRAMEWORK ON GPU

In this paper, we propose a compressibility-aware framework
that can significantly improve compression ratios. In CUSZ
[13], all the computations are executed on GPU for high-
performance purposes, leading to compression ratios no greater
than 32 (for single-precision, or 64 for double-precision). Such
an upper bound is due to the lack of dictionary coding or
other pattern-finding-based coding methods. We note that if
“data being smooth enough” is satisfied, we can apply the
alternative run-length encoding (RLE) technique to achieve a
higher compression ratio while maintaining 1) the same data
quality and 2) a comparable throughput. In the following text,
we use Workflow-Huffman to denote the default “Lorenzo &
multi-byte VLE” and Workflow-RLE to denote “Lorenzo &
RLE with optional VLE”.

In the following discussion, we first overview our compressi-
bility-aware design and then give details of our optimization
strategies. Fig. 1 presents an overview comparison between our
novel compression framework, CUSZ+ and the previous CUSZ.
The adaptivity of CUSZ+ is reflected in two workflow paths.

A. Compressibility

A.1) Source of Compressibility The rationale for the SZ frame-
work to achieve high compression is twofold. First, integer data
are easier to compress than IEEE-754 floating-point data. A
non-special float-type number (e.g., non-zero) requires full
32 bits to represent (double requires 64 bits). SZ’s prediction-
quantization step transforms prediction errors into quant-codes
in integer and eliminates the randomness in terms of floating-
point mantissa. Second, the quant-codes within a predefined
range would be compressed further in a lossless manner (i.e.,
Huffman encoding in our case), while the out-of-range predic-
tion errors are outliers. Then, we enumerate the in-range quant-
codes as bin numbers of the histogram and later as symbols
in Huffman codebook. Without context, generic lossless com-
pressions interpret the input as a stream of bytes. In contrast,
the enumeration in a power-of-two nenum can exceed 256 and
thus overflow a byte. So, we use at least dnenum/8e bytes to
represent symbols, which can be single-byte or multi-byte.
The byte interpretation ensures that the enumeration reflects
the distribution of quant-codes such that in Huffman coding,
frequent symbols are encoded with fewer bits.
A.2) Reference Compression Ratio TABLE I enumerates the
possible lossless compression techniques that are from CPU-
SZ and CUSZand show consequential compression ratio with
different error bounds quantitatively. In the table, qg serves
to demonstrate a presumed suboptimal scenario; the single-
byte interpretation (by a generic lossless compressor) does
not indicate the most likely quant-code and hence hurt the

3

compress decompress

prequantize predict postquantize statistics lossless encode lossless decode reversed
pred-quant

(1)
integerize

“prequant”
(2)

Lorenzo
construct. (3.2) quantization

(3.1) error control

(3.3) gather outlier

(4) histogram (5) multibyte Huff.cu
SZ

(1)
integerize

“prequant”
(2) Lorenzo

construct. (3.2) quantization

(3.1) error control

(3.3) gather outlier

(4.1) hist.

(4.2) decide

(5.a) RLE

(5.b) multibyte Huff.

(+VLE)

ch
oo

se

cu
SZ

+

(d, 1.1) Huff. decode

(d, 1.2) scatter outlier

(d, 2)
Lorenzo
reconstruct.

(d, 1.1a)
reversed

(VLE+) RLE

(d, 1.1b) Huff. decode

(d, 1.2) scatter outlier

(d, 2) Lorenzo
reconstruct.

Fig. 1: Compression (left) and decompression (right) workflows of the original CUSZ (top, line patterned) and our CUSZ+ (bottom). We design
an adaptive solution toward better throughput and compression ratio, featuring 2 workflow paths. The white block indicates functionality; the
parenthesized number marks executing order, where the additional letters “a” and “b” mark the two paths to choose from; the gray enclosure
indicates GPU kernel; the arrow indicates memory copy. The changes from CUSZ to CUSZ+ are marked with blue boldface.

compressibility. h indicates the Huffman coding of multi-byte
symbols used in both CPU-SZ and CUSZ. qh indicates CUSZ
compression schemes that are done on GPU entirely, while qhg
adds gzip to exhibit the highest possible compression ratio,
which is archived by CPU-SZ. We will use the compression
ratio from qhg as a reference in the following discussion.
A.3) Data Feature Awareness Even though it is possible
to achieve optimal compression ratio by appending another
pattern-exploiting stage to CUSZ, it affects the throughput
severely since gzip takes place on host. This motivates us to
visit the data features that can infer compressibility. On the
other hand, utilizing the repeated pattern is non-trivial because
pattern-finding is usually implemented in dictionary coding
with irregular accesses and has been reported as low in through-
put: for instance, LZ4 features relatively high throughput but
still can be significant in latency as one appended stage [20].

In this work, we propose a solution to exploit the repeated
data pattern by leveraging the indication of data smoothness.
The prediction would generate two types of data: zeros and non-
zeros. The zero represents the cases in which the prediction er-
ror is no greater than one unit of the error bound (eb) regarding
the original value. And the non-zeros represent the otherwise,
which are expected scarce and scattered across the data. With
such dichotomy, we consider that the quant-codes are smooth
when they are locally continuous with zeros and propose to use
run-length encoding to utilize the data patterns that may exist.

Optionally, we can append another stage of Huffman en-
coding, which can further bring a steady 2× to 3× ratio gain
beyond RLE. Our design goal is to push the compression
ratio beyond the original 32× for float (or 64× for double);
considering the throughput, compressing the metadata of RLE
output is optional and by default disabled in GPU processing.
We further expand the criteria and the uses of RLE in §III-B.

B. Smoothness and Run-Length Encoding

RLE, first introduced in [21], is a form of lossless compres-
sion, in which sequences of consecutive same-value data ele-
ments are stored as value-count tuples. Such kinds of sequences
are called runs of data. For example, “aabcccccaa” is stored as
“(a,2)(b,1)(c,5)(a,2)”. RLE’s continuity in the same values can
be seen as a simplistic pattern-finding method; its regular access

(a) Smoothness against encoding distance (CESM FSDSC at 1e-2). The yellow
line denotes linear regression of variances at distances.

(b) Smoothness-Probability of the most likely symbol relationship.

Fig. 2: Smoothness of prequantized data and quant-code, and
smoothness-probability of the most likely symbol relationship can help
determine when to use RLE. For example, a threshold compression ra-
tio can be set to 32 to find the desired smoothness, and the smoothness
can be directed to the probability of the most likely symbol.

when checking the following values can contribute to the high
throughput on GPU. Without the prefix property of Huffman
coding, the length of runs must be recorded as metadata, intro-
ducing overhead. The overhead immediately raises questions
of (1) how to model the compressibility and (2) when to use
RLE. We identify that madogram, a variogram [22] variant,
and histogram can help make the decision—madogram suffices
to reveal the reason RLE can perform well, and histograming
is easy to conduct and coincide can converge to indicate the
chances of performing RLE.

4

B.1) Estimation from Histogram We first discuss the data fea-
tures that motivate VLE, based on the histogram. The entropy
value of the histogram is calculated asH(X) = −

∑
pi log2 pi,

where pi is the probability of the i-th symbol. We use 〈b〉
to denote the average bit-length of Huffman codeword, and
〈b〉RLE to denote that of RLE. We use R (redundancy) to
denote the discrepancy between 〈b〉 and entropy H(X) (i.e.,
R = 〈b〉 − H(X)). Denote the probability of the most likely
symbol by p1. With p1, we can estimate the upper and lower
bounds of R, R+ and R−, respectively. When p1 > 0.4,
R− is given by 1 − H (p1, 1− p1), where H (p1, 1− p1) =
p1 log2

1
p1

+ (1− p1) log2
1

1−p1
[23]. The upper bound is given

by R+ = p1 + 0.086 (no restriction) [24]. Therefore, without
building Huffman tree, we can estimate the upper and lower
bound of 〈b〉 with R+ and R−, respectively. A lower bit-length
leads to a higher compression ratio. We expect to use RLE
when 〈b〉RLE ≤ 〈b〉. And we also use the upper bound of 〈b〉
to estimate the lowest gain of an additional Huffman coding
after RLE (see TABLE IV).

B.2) Modeling RLE Compressibility Due to the obvious over-
head from storing the metadata, RLE would do when the
penalty caused by value change is sufficiently low. And the
low penalty can be translated to the data being smooth enough.
However, the histogram cannot reflect the smoothness because
a locally smooth datum can have a similar histogram to a
rougher one.

The method of variogram [22] inspires us to derive a new
scheme to measure the smoothness. Variogram (i.e., general-
purpose multidimensional data variance) is a very effective
metrics to reveal a variance-distance relationship in spatial data
based on sampling. Its theoretical form is

2γ (s1, s2) = var
(
Z(s1)− Z(s2)

)
= E

[(
Z(s1)− Z(s2)

)2]
,

where Z(s) is a spatial random field. Considering the encoding
iteration is unidimensional, we substitute the power description(
Z(s1)−Z(s2)

)2
with the absolute difference |Z(s1)−Z(s2)|

to form madogram. Also note that an RLE run discontinues
when the value differs from the current one (vthis), we further
adjust the absolute difference to binary difference, defined as

binary variance =

{
0 vthis = vnext
1 vthis 6= vnext

,

regardless of the distance. And the expected value (defined
below) is interpreted as RLE roughness; then, smoothness is
naturally (1 − roughness). Given the O

(
n2
)

nature of enu-
merating pairwise variances, the empirical madogram method
would do with an offline sampling scheme. More specifically,
given a sufficiently large number sampling number N and a
maximum distance of measurement Dmax = 200, we form the
pair (a, a + d), where a is randomly selected from the whole
data field, and d = rand(1, 200) (suppose (a + d) is in the
data range). The summed variance of each distance is averaged
by its corresponding count. The averaged binary variance v(d)
remarks the roughness, and 1− v(d) the smoothness.

We first show the madogram of the prequantized original

data and quant-code in absolute difference and the madogram
of quant-code using binary variance in Fig.2. Fig.2a shows that
quant-code is smoother with less variance than the prequantized
original data. That is to say, the prediction-quantization scheme
uses much less information to represent the data change and
therefore helps achieve a high rate of data reduction. The third
part of Fig.2a indicates that quant-code can forward-encode
from a fixed starting point with almost equal roughness at an
arbitrary distance from the starting point. Hence, at a stable rate
of roughness, it is worth performing RLE. The next step is to
determine the threshold. Fig.2b shows that with binary variance
we can relate (1) data continuity/smoothness and the compres-
sion ratio (CR) and (2) data smoothness and the probability of
the most likely symbol (p1). With (1), for example, a simplistic
case is to set a CR threshold at 32 and look up the smoothness
for RLE or RLE+VLE. With (2), p1 can determine compression
ratios of both the proposed RLE workflow and VLE in CUSZ
and be used to select from the two workflows. For example,
FSDSC has an RLE-CR above 25 while CUSZ-VLE-CR is 26×
to 29×. Note that 1) there is an overhead of chunkwise metadata
from CUSZ-VLE (the final CR is 23.88) and 2) additional VLE
after RLE can provide steady 3×more CR in general (estimated
from the corresponding histogram), making the accumulated
CR above 70× in this case.

We can use the mapping to determine when to use RLE. For
example, we can set a threshold of 32×, the highest possible
compression ratio obtained from Huffman coding, and find the
empirical smoothness hence the proper p1. Or, more conve-
niently, we can give a practical conclusion: when Huffman is
likely to achieve an average bit-length lower than 1.09, we can
use RLE.

IV. PERFORMANCE OPTIMIZATION

In this section, we present our optimization strategies, featur-
ing (1) performance improvements on each kernel in compres-
sion, and (2) a new high-performance Lorenzo reconstruction
kernel in decompression.

A. Compression Optimization

A.1) Dual-Quantization In Original SZ, in situ data recon-
struction is required during compression; such reconstruction
is precisely the same as decompression-time one. Specifically,
a data item d is reconstructed from the known previous items,
based on their known predecessors recursively. Such process 1)
makes a compression-time reconstructed item in place of the
original, iteratively, and therefore 2) causes loop-carried read-
after-write dependency. And quant-code that controls the error
compensation is one outcome of this process, which would be
encoded further. To get quant-code q and use it to reconstruct
data d in an arbitrary iteration, SZ needs to go through the
following data transformation. I) the prediction error is from
e◦ = d− p◦, where p◦ denotes predicted value. II) with respect
to the user-input error bound eb, e◦ is integerized to quant-
code q◦ with rounding. III) e◦? is transformed from q◦ and
serves as error compensation to p◦ such that d◦? = e◦? + p◦

5

approximates d with a loss that is no greater than 1 × eb,
ensuring error-boundness.
A.1.a Generality CUSZ work [13] resolved the tight RAW
dependency by foregoing integerization. Its essential technique
is two-phase dual-quant, including
prequant With integerization d◦ = round〈d/(2 · eb)〉, where

d is the original, the compression error |d− d◦ · 2eb| < eb
is guaranteed.

postquant The difference between the prediction p◦ and the
target integer value d◦ is rendered as δ◦ = d◦ − p◦. The
quant-code q◦ is equivalent to but typecasted from δ◦.

Note that δ is the counterpart of error compensation e; the mark
δ is deliberately chosen for there is no further error introduced
after prequant. Unlike error compensation e◦ 6= e◦? in Original
SZ, d◦→δ◦ and δ ≡ q guarantees the reconstructed d◦? = p? +
δ = d◦. Therefore, it obviates the calculation after q◦. And
d◦, equivalently the known reconstructed data, is ready after
prequantization, eliminating the loop-carried RAW dependency
parallelizing prediction-quantization.
A.1.b Computational Efficiency Computation-wise, it is worth
noting that CUSZ’s dual-quant method continues working for
CUSZ+ with Lorenzo predictor and a modified quantization
scheme. According to Tao et al. [9], the general-form Lorenzo
predictor is given by∑k1...d 6=0

0≤k1...m≤n

〈∏m
j=1(−1)kj+1

(
n
kj

)〉
· dx1−k1, ··· , xd−kd

, where∑k1...d 6=0
0≤k1...m≤n

〈∏m
j=1(−1)kj+1

(
n
kj

)〉
= 1, that is, throughout

the prediction, coefficients sum to 1. Thanks to dual-quant, the
integer coefficient is a set C = {c | c ∈ N} that is closed
under addition, subtraction, and multiplication (i.e., no division
involved). Moreover, integer-based data reconstruction is pre-
cise and robust with respect to machine ε. In addition, integer
summation is considered as commutative, i.e., a ⊕ b = b ⊕ a
and ⊕ becomes integer addition. Thus, given arbitrary numbers
of integers, adjusting the addend order results in no difference
in sum. This property guarantees that our proposed fine-grained
Lorenzo reconstruction (will be discussed in §IV-B) can reorder
the prediction computation.
A.2) Compression Kernel Enhancement We mainly focus on
optimizing two kernels: Lorenzo construction and the Huffman
encoding. Besides coalescing interaction with DRAM/shared
memory, we propose to adopt two primary strategies to in-
crease the number of thread blocks (or warps) that can run
concurrently within one SM (streaming multiprocessor). I) We
coarsen the granularity by assigning more data items to one
thread. For example, a 16×16 2D data chunk is equally split
into two groups, each traversed in consecutive 8 items along
y-direction. Note that the data-thread mapping my differ from
the coalescing load & store. Then, it is possible to launch
more warps per SM toward higher occupancy. II) According
to the extrapolative prediction form, neighboring data items
are reused, with the index difference being 1. We perform in-
warp shuffle to exchange data. This strategy can decrease the
shared memory use to launch more warps in the same SM. The
comparison between the kernels of CUSZ and our CUSZ+ is
shown in TABLE VI.

Algorithm 1: Lorenzo construction and reconstruction. Yellow-
highlight marks the modified quantization scheme. Blue-
highlight marks partial-sum based reconstruction.

1 (for all fp-prepresented data item d) . compression

2 d◦← (d).divided by(2×eb) . prequant, barrier

3 p◦← `(d◦SR), δ◦ ← p◦− d◦

4 if δ◦ < cap/2 ≡ radius r then . postquant

5 q◦ ← (δ◦).to int() + r . captured, to lossless-compress

6 else

7 outlier ← δ◦ . remaining fp presence

8 end if

pΣ to denote inclusive partial-sum . decompression

(for all q• ≡ q◦)
9 q′ ← (q• ⊕ outlier)− r . fuse quant. and outlier

10 d• ← pΣx q′ only if dim. x exists . barrier

11 d• ← pΣy (pΣx q′) only if dim. x, y exist . barrier

12 d• ← pΣz (pΣy (pΣx q′)) only if dim. x, y, z exist . barrier

13 output ← d• · (2×eb)

B. Decompression Optimization

B.1) The Modified Quantization Scheme We first modify the
quantization scheme of compression to eliminate the diver-
gence in the reconstruction procedure, enabling fine-grained
parallelism on GPU architectures. In CUSZ, if the error com-
pensation δ◦ at the prequantized d◦ is out-of-range, d◦ is oth-
erwise stored as an outlier, with 0 stored as the placeholder.
In CUSZ+, if the compensation δ◦ is out-of-range, δ◦ is stored
as an outlier (line 7 in Algorithm 1), while the quant-code
remains stored in the same way (line 5 in Algorithm 1). Then,
the outlier and the quant-code are further processed, i.e., stored
directly and compressed in a lossless manner, respectively.
During the decompression, the outlier and the quant-code are
extracted from the compression archive as it is and from lossless
decoding, respectively.

During decompression, the original CUSZ accesses outlier
when hitting 0 (the placeholder). However, CUSZ’s coarse-
grained reconstruction only exploits the parallelism of mul-
tithreading but rarely considers dependency, memory access
pattern, and computational efficiency. In comparison, by modi-
fying quantization, CUSZ+ fuses the quant-code and the outlier
before reconstruction (line 12 in Algorithm 1). In such a man-
ner, we conduct the reconstruction from the error compensation
δ• without any stall, hence eliminating the dependency that
exists in CUSZ’s coarse-grained reconstruction.
B.2) Partial-Sum Lorenzo Reconstruction The default 1D to
3D first-order Lorenzo predictors are put as follows,

p[x] = + d[x−1]

p[y,x] =− d[y−1,x−1] + d[y−1,x] + d[y,x−1]

p[z,y,x] = + d[z−1,y−1,x−1] − d[z−1,y−1,x] − d[z,y−1,x−1] + d[z,y−1,x]

− d[z−1,y ,x−1] + d[z−1,y ,x] + d[z,y ,x−1]

In the following text, we use 2D form to demonstrate the
expression. Let r denote quantization radius. In decompression,
d• = p• + q•− r; with q′ = q•− r, it becomes d• = p• + q′.
Considering that we initially predict from zeros, the first pre-

6

dicted item is d•[0,0] = q′[0,0]. We then observe that an arbitrary
item [y, x] is predicted as

∑y
j=0

∑x
i=0 q

′
[j,i]. We give a proof by

induction on [y, x], as d•[y+1,x+1] equals to

−
y∑

j=0

x∑
i=0

q′[j,i] +

y∑
j=0

x+1∑
i=0

q′[j,i] +

y+1∑
j=0

x∑
i=0

q′[j,i] + q′[y+1,x+1]

=

y∑
i=0

q′[j,x+1] + q′[y+1,x+1] +

y+1∑
j=0

x∑
i=0

q′[j,i] =

y+1∑
j=0

x+1∑
i=0

q′[j,i].

An intuitive demonstration for 2D case is shown in Fig.3a, with
canceling the joint summation. Similarly, the computation for
N -D case can be done by N -D partial-sum as follows.
B.2.a Computation We define N -D partial-sum of x till index
[kN , . . . , k2, k1] ∈ NN as

pΣ(x; kN , . . . , k2, k1) =

kN∑

iN=0

· · ·
k2∑

i2=0

k1∑

i1=0

x[iN ,...,i2,i1],

where pΣ is a variadic operator for any N . We can decompose
it to N -pass 1-D partial-sums, as

pΣ(x; kN , . . . , k2, k1) = pΣ(pΣ
(
x; kN−1, . . . , k2, k1

)
; kN)

=pΣ(pΣ
(
· · · pΣ

(
pΣ
(
x; k1

)
; k2

)
· · · ; kN−1

)
; kN).

That is, the output of a partial-sum on xm-direction is the
input of that on x(m+1)-direction. Given the problem size
(XN , . . . , X2, X1), where k(·) ≤ X(·), a pass along x(·) fea-
tures the degree of independence (hence the maximum possible
parallelism) equal to

∏
i 6=(·)Xi.

We give an example for 2D case of size by-by-bx. The first
partial-sum along x is performed through indices [y, 0 . . . bx],
given any y; the partial-sum at [y, x] is pΣ (q′|y;x) =∑x

i=0 q
′
[y,i]. The second partial-sum along y is performed

through indices [0 . . . by, x], given any x; the partial-sum at
[y, x] is pΣ(q′|y,x; y, x) = pΣ (pΣ (q′|y;x)|x; y). Their par-
allelism degrees are by and bx, respectively. An illustration of
this parallelized computation is given in Fig. 3b.
B.3) Implementation Detail We conduct partial-sum in a
chunk-wide manner, as the compression is the same way: no
inter-chunk dependency. To illustrate the effectiveness of this
proposed solution, we first have a proof-of-concept implemen-
tation using shared memory and assign 1 item to 1 thread. Com-
pared to the coarse-grained implementation in CUSZ, this one
improves in performance notably (see “naı̈ve” against “CUSZ”
in TABLE II). Also, note that the new reconstruction kernel
has high performance, similar to the fine-grained construction
kernel in CUSZ (see “CUSZ” column). Our proposed fine-
grained solution for CUSZ+ exhibits higher resource utilization
than the coarse-grained parallelization does in CUSZ.

It is worth noting that the arithmetic intensity of the Lorenzo
reconstruction kernel is relatively low with linear algorithmic
time complexity, which tends to be memory-bound. Thus, we
consider the two optimizations over the naı̈ve implementation:

1) We tune the access pattern to ensure the coalesced load/s-
tore from/to global memory.

2) We increase the sequentiality to each thread to balance
load/store and computation.

With these optimizations, we form a different thread block
management, considering that there is no canonical way to
map the thread to the data throughout the dimensions; instead,
the data-thread mapping is more bottom-up. Among all the
abstraction levels from warp (“SIMDness”) to grid, warp con-
vergence is the first concern to address. On the other hand, our
problem features more “streaming”-style memory access given
the linear processing time; there is not much of locality that we
can exploit. This is distinct from “persisting” style found in,
e.g., gemm, whose algorithmic complexity is much above O(n).
Therefore, the workflow path of global-memory→ register→
shared-memory is neither efficient nor necessary, given that the
register file can hold a certain amount of data and perform in-
warp operations.

B.3.a 1D Implementation We attribute the chunkwise partial-
sum to 1D BlockScan and implement it using NVIDIA::cub
library. Warp-striped load/store from/to global memory is used
to ensure the coalesced read/write. We test different sequen-
tialities of each thread, with warp-/block-wide scan-and-sync
employed. We use 256 as 1D chunk size in CUSZ+ and the vx
field in 1D HACC dataset as an example in TABLE II.

B.3.b 2D Implementation There is no such direct abstraction,
however, for higher-dimensional partial-sum—the multidimen-
sional use of cub is internally linearized to 1D. Thus, we
handcraft the 2D reconstruction kernel. We use 16 × 16 as 2D
chunk size in CUSZ+ (the same as CUSZ). The 1-to-1 thread-
data binding and unconditional use of shared memory (the
only explicit cache in GPUs) incurs both low computational
utilization of each thread (and hence warp) and underuse of
register file. In-warp operations such as __shfl_up_sync allow
accessing the register in the same warp and hence data exchange
without using shared memory. We then specify x-direction as
warp-shuffling space while setting sequentiality to y-direction.
Each thread holds an n(2)-length thread-private array tp[], in
which a fragment of partial-sum is sequentially and trivially
done. 16

n(2)
threads are needed along y-direction to complete

a size-16 partial-sum. Of the same y, all threads except the
last one propagate the last-element value in tp[] to all the
elements in the next thread’s private array, sequentially, using
shared memory to exchange. We identify the sequentiality of
8 results in the optimal throughput under such thread block
configuration—a (16, 2, 1)-block size comprises a warp—at
254.2 GB/s on V100 and 508.6 GB/s on A100 with testing on
a sample CESM field. Note the throughputs are comparable to
those from the high-throughput 1D kernel.

B.3.c 3D Implementation The 3D problem has an addition
to the 2D implementation. Right after the same procedure in
the 2D case, we append an x-z transposition of the x- and y-
direction partial-sum result and repeat the previous x-direction
partial-sum (with z-direction data). Based on trials, we identify
that the 8× sequentiality results in the best throughput. Yet,
the 3D kernel, due to the longer computational process, does
not achieve as high throughput as lower dimensionality. Further
evaluation and analysis are listed in TABLE VII in §V.

7

−
y∑

j=0

x∑

i=0

q′[j,i]

+

y+1∑

j=0

x∑

i=0

q′[j,i]

+

y∑

j=0

x+1∑

i=0

q′[j,i]

+q′[y+1,x+1]

(a) Concept of reconstruction in terms of 2D partial-sum.

partial-sum along x partial-sum along y

pΣ (x−1)|y−2

+q′y−2,x−1−−−−−−−→ pΣ (x)|y−2 pΣ
(
pΣ (x)|y−2

)∣∣∣
x

+ pΣ(x)|y−2−−−−−−−−→ pΣ
(
pΣ (x)|y−1

)∣∣∣
x

pΣ (x−1)|y−1

+q′y−1,x−1−−−−−−−→ pΣ (x)|y−1 pΣ
(
pΣ (x)|y−1

)∣∣∣
x

+ pΣ(x)|y−1−−−−−−−−→ pΣ
(
pΣ (x)|y

)∣∣∣
x

pΣ (x−1)|y
+q′y ,x−1−−−−−−−→ pΣ (x)|y pΣ

(
pΣ (x)|y

)∣∣∣
x

+ pΣ(x)|y−−−−−−−−→ pΣ
(
pΣ (x)|y+1

)∣∣∣
x

(b) Exemplary 2-pass partial-sum computation for 2D data reconstruction.

Fig. 3: Example of 2D partial-sum computation for Lorenzo reconstruction in CUSZ+’s decompression.

throughput cuSZ ours ours A100 adv.
measured in GB/s [13] (näıve) (optim) over V100

1D (HACC) A100 - 219.8 +130% 504.5 1.64×
V100 16.8 +1404% 252.6 +24% 313.1

2D (CESM) A100 - 182.1 +179% 508.6 2.00×
V100 58.5 +239% 198.4 +28% 254.2

3D (Nyx) A100 - 147.9 +174% 405.1 1.70×
V100 29.7 +492% 175.9 +35% 238.1

TABLE II: Proof-of-concept throughput on V100 for {1, 2, 3}-D. The
referenced throughput of CUSZ’s Lorenzo reconstruction covers all the
fields [13]. The table shows a single field (i.e., vx in HACC, CLDHGH in
CESM, baryon-density in Nyx) for demonstration purpose.

V. EXPERIMENTAL EVALUATION

This section presents our experimental setup (platforms,
baselines, and datasets) and our evaluation results.

A. Experimental Setup

A.1) Evaluation Platform We conduct our experimental eval-
uation on two HPC systems equipped with NVIDIA Tesla
V100 and A100 GPUs3, including ThetaGPU [25] at Argonne
Leadership Computing Facility and Longhorn [26] at Texas
Advanced Computing Center. More details are listed below.
• ALCF-ThetaGPU: NVIDIA A100, SXM4 variant, CUDA 11.1

DRAM 40-GB HBM2e at 1555 GB/s (1.38× V100)
compute 19.49 FP32 TFLOPS (1.73× V100)

host AMD 7532 (32-core), 256 GB

• TACC-Longhorn: NVIDIA V100, SXM2 variant, CUDA 10.2

DRAM 16-GB HBM2 at 900 GB/s
compute 14.13 FP32 TFLOPS

host 2 IBM Power9 (40-core), 256 GB

A.2) Baselines We compare our CUSZ+ with multiple base-
lines. Specifically, 1) we compare CUSZ+ with CUSZ in terms
of our optimized kernels (i.e., Lorenzo construction, Huffman
encoding, Lorenzo reconstruction), 2) we compare CUSZ+ on
A100 versus on V100, and 3) we compare CUSZ+’s Workflow-
RLE with CUSZ’s Workflow-Huffman.
A.3) Test Datasets We conduct our evaluation and comparison
based on seven typical real-world HPC simulation datasets of
each dimensionality, most of which are from the Scientific Data
Reduction Benchmarks suite [17]. The datasets include

1) 1D HACC cosmology particle simulation [1],
2) 2D CESM-ATM climate simulation [27],
3) 3D Hurricane ISABEL simulation [28],
4) 3D Nyx cosmology simulation [29],

3We note that PCIe-A100 holds a marginal 30% less throughput than SXM4-
A100. In this work, we use the SXM4 variant for evaluation.

5) 3D seismic wave RTM data,
6) 3D hydrodynamics Miranda [30] 4, and
7) 3D Quantum Monte Carlo [31], reinterpreted from 4D.
They have been widely used in prior works [3, 4, 7, 32,

33] and are good representatives of production-level simulation
datasets. TABLE III shows all 128 fields across these datasets.
The data sizes for the seven datasets are 6.3 GB, 2.0 GB,
1.9 GB, 3.0 GB, 1.8 GB, 1.0 GB, and 1.2 GB, respectively.
Note that our evaluated HACC dataset is consistent with real-
world scenarios that generate petabytes of data. For example,
according to [1], a typical large-scale HACC simulation for
cosmological surveys runs on 16,384 nodes, each with 128
million particles, and generates 5 PB over the whole simulation.
The simulation contains 100 individual snapshots of roughly 3
GB per node. We evaluate a single snapshot for each dataset
instead of all the snapshots because the compressibility of most
of the snapshots usually has strong similarities. Moreover, when
the field is too large to fit in a single GPU’s memory, CUSZ+
divides it into blocks and then compresses by block.

datum size #fields
datasets dimensions examples(s)
cosmology 1,071.75 MB 6 in total
HACC 280,953,867 x, vx
climate 24.72 MB 77 in total
CESM-ATM 1,800×3,600 CLDHGH, PHIS
climate 95.37 MB 20 in total
Hurricane 100×500×500 CLOUDf48, Uf48
cosmology 512 MB 6 in total
Nyx 512×512×512 baryon desnity
seismic wave 180.72 MB 10 in total
RTM 449×449×235 snapshot28{0...9}0
hydrodynamics 144 MB 7 in total
Miranda• 256×384×384 density, pressure
Quantum Monte Carlo 601.52 MB 2 in total
QMCPACK 288x115x69x69 preconditioned

TABLE III: Real-world float-type datasets used in the evaluation.
• Miranda (double-type) is converted to float-type for CUSZ’s sup-
port. QMCPACK includes only one field but with two representations.

B. Evaluation on Compression Ratio

TABLE IV shows several cases that RLE performs better in
compression ratio than CUSZ-VLE. Run-length encoding is im-
plemented using thrust::reduce by key and achieves 100
GB/s throughput on V100 and slightly higher throughput on
A100. The table demonstrates that RLE may replace the multi-
byte VLE in the original workflow and maintain or achieve
higher compression ratios; it can also be used as an additional

4It is converted to float from double

8

cuSZ+gzip cuSZ ours ours
(qhg) ref. (qh) VLE RLE gain RLE+VLE gain

AEROD v 94.27 25.06 10.46 - 30.33 1.21×
FLNTC 56.95 23.66 8.87 - 25.35 1.07×
FLUTC 57.06 23.66 8.91 - 25.46 1.08×
FSDSC 58.30 23.88 26.10 1.09× 71.35 2.99×
FSDTOA 430.61 26.10 43.65 1.67× 119.17 4.57×
FSNSC 51.73 23.44 10.11 - 29.46 1.26×
FSNTC 60.35 23.88 12.33 - 35.50 1.49×

FSNTOAC 111.63 25.06 12.46 - 35.84 1.43×
ICEFRAC 159.18 25.31 16.57 - 50.39 1.99×
LANDFRAC 97.15 23.66 13.98 - 40.50 1.71×
OCNFRAC 89.55 23.88 11.23 - 32.55 1.36×

ODV bcar1 189.28 25.83 37.28 1.44× 110.51 4.28×
ODV bcar2 197.32 25.83 30.71 1.19× 89.98 3.48×
ODV dust1 242.89 26.10 22.91 - 67.72 2.59×
ODV dust2 319.55 26.37 24.02 - 70.98 2.69×
ODV dust3 270.50 26.10 33.29 1.28× 98.22 3.76×
ODV dust4 230.40 26.10 46.81 1.79× 139.27 5.34×
ODV ocar1 65.81 24.11 41.17 1.71× 121.59 5.04×
ODV ocar2 64.92 24.11 33.79 1.40× 98.63 4.09×

PHIS 98.86 25.06 9.51 - 28.87 1.15×
PRECSC 176.21 25.83 19.50 - 58.92 2.28×
PRECSL 142.23 25.57 15.39 - 45.69 1.79×

PSL 83.13 24.34 12.43 - 36.32 1.49×
PS 98.59 21.09 7.45 - 22.27 1.06×

SNOWHICE 144.74 25.31 15.14 - 45.53 1.80×
SNOWHLND 184.39 25.57 21.18 - 63.33 2.48×

SOLIN 430.62 26.10 43.65 1.67× 119.17 4.57×
TAUX 100.30 25.06 11.30 - 33.28 1.33×
TAUY 106.55 25.31 12.40 - 36.45 1.44×

TREFHT 82.50 24.58 8.75 - 25.12 1.02×
TREFMXAV 87.39 24.58 9.60 - 27.33 1.11×
TROP P 93.78 24.82 11.19 - 31.40 1.27×
TROP T 92.94 24.82 11.10 - 30.64 1.23×
TROP Z 84.81 24.58 9.48 - 27.07 1.10×

TSMX 64.95 23.88 8.55 - 24.69 1.03×

TABLE IV: Data fields that CUSZ+ with Workflow-RLE has higher
compression ratio than CUSZ with Workflow-Huffman under 10−2

error bound. “gain” is based on ours against (qh) VLE from CUSZ.

stage to VLE to get up to 5.3× compression ratio improvements
over CUSZ on the tested datasets.

V100 (GB/s) A100 (GB/s) CR
Huff/RLE overall Huff/RLE overall

RTM ours 142.4 57.8 212.6 78.0 76.0×
#2800 cuSZ 135.7 55.1 233.9 80.8 31.7×

CESM ours 104.8 47.7 162.4 57.8 26.1×
FSDSC cuSZ 146.3 54.8 146.4 55.5 23.0×

Nyx ours 159.1 64.1 214.5 91.2 122.7×
baryon cuSZ 130.8 58.9 234.2 94.8 31.0×

TABLE V: Throughputs (in GB/s) of CUSZ+ (based on RLE) and
CUSZ (based on Huffman coding) on example RTM, CESM, and Nyx
fields for a demonstration purpose.

TABLE V shows the throughputs of CUSZ+ using the
Workflow-RLE on the RTM, CESM, and Nyx datasets. It demon-
strates that the RLE-based workflow can not only improve the
compression ratio, but also maintain a comparable compression
throughput. Thus, CUSZ+ can provide users flexibility between
high compression ratio and performance.

C. Evaluation on Performance and Scalability

In this section, we evaluate the compression performance of
CUSZ+ and compare it with CUSZ.
C.1) Evaluation on Optimized Kernels We first evaluate the
performance of the majorly changed kernels in CUSZ+ and
CUSZ on V100, as shown in TABLE VI. The baseline is from
the evaluation results shown in the CUSZ paper [13]. The table
illustrates that the performance improvements of CUSZ+’s
Lorenzo construction kernels are 1.48× for 1D data, 1.09×
for 2D data, and 1.45× for 3D data on average over CUSZ.

Lorenzo comp. Huffman Enc. Lorenzo decomp.
cuSZ ours cuSZ ours cuSZ ours

HACC 207.7 307.4 1.48× 54.1 58.3 1.08× 16.8 313.1 18.64×
CESM 252.1 273.9 1.09× 57.2 107.7 1.88× 58.5 254.2 4.35×
Hurricane 175.8 229.9 1.31× 55.2 111.2 2.01× 43.9 218.4 4.97×
Nyx 200.2 296.0 1.48× 58.8 120.5 2.05× 29.7 238.1 8.02×
QMCPACK 189.6 298.6 1.57× 61.0 110.8 1.82× 22.4 255.5 11.41×

TABLE VI: Performance comparison of Lorenzo and Huffman encod-
ing kernels in CUSZ+ and CUSZ on V100. The unit is in GB/s.

Moreover, we increase the lowest throughput from 175.8 GB/s
to 229.9 GB/s (+30.7%) on the tested datasets.

For Huffman encoding kernel, despite it being more latency-
bound, it also suffers from non-coalescing store. Because of the
variable-length encoding and bit operation spanning multiple
bytes, it is impossible to make threads work in a synchronized
manner (otherwise, a high synchronization overhead would
be imposed). Our optimization can decrease the number of
DRAM store transactions to be inversely proportional to the
compression ratio. In particular, we perform a DRAM store
only when a new data unit needs to be written back, which helps
us achieve 1.08× to 2.05× performance gain.

The table also shows that by using the fine-grained ND
partial-sum computation, CUSZ+’s Lorenzo reconstruction ker-
nel exhibits up to 18.4× performance improvements over
CUSZ’s coarse-grained kernel. The 2D and 3D kernels also
exhibit 4.5× and 4.6× to 7.1× performance improvements,
respectively. In addition, TABLE VII shows the speedup of our
optimized kernels on A100 compared to on V100.
C.2) Evaluation on Default Compression Workflow The rest
of TABLE VII shows the evaluation of CUSZ+ based on the
default compression workflow on both V100 and A100 with the
relative error bound of 10−4 (with PSNRs higher than 85 dB).
It illustrates the performance of our optimized compression and
decompression kernels. We note that the performance improve-
ments of the histogram kernel and the gather-outlier kernel are
relatively lower than those of other compression kernels (the
performance is even degraded on some datasets such as CESM
and RTM) from using A100 to using V100. The degradation
may be because each field of CESM-ATM and RTM is fairly small
(24.7 MB and 180 MB, respectively), such that the histogram
kernel (using the algorithm from [34]) and the gather-outlier
kernel (using the dense-to-sparse kernel from cuSPARSE) on
A100 do not maintain the same work efficiency as on V100.
But note that these two kernels would not be bottlenecks 5 for a
relatively large dataset (e.g., hundreds of MBs per field), which
is more common in practice (e.g., HACC and Nyx).

In addition, we observe that CUSZ+’s kernels with dif-
ferent parallelism have different scalabilities. Specifically, the
sparsity-related operation in compression can be enhanced sig-
nificantly by using A100 GPU, but other compression kernels
such as Huffman encoding are scaled up marginally. As a result,
the overall improvement of compression performance is limited
when changing from using V100 to using A100. Similarly,
for decompression, although the outlier scatter operation scales

5The Huffman encoding kernel is the main bottleneck in the compression
workflow compared to other compression kernels.

9

V100-ours, GB/s A100-ours, GB/s (and advantage over V100)

size in MB 1071.8 24.7 95.4 512.0 180.7 144.0 601.5 1071.8 24.7 95.4 512.0 180.7 144.0 601.5
HACC CESM Hurr Nyx RTM Mira. QMC HACC CESM Hurr Nyx RTM Miranda QMC

Lorenzo construct 328.3 273.9 199.0 296.0 193.1 289.3 298.6 501.1 1.53× 466.8 1.70× 429.0 2.16× 481.3 1.63× 422.7 2.19× 480.7 1.66× 492.9 1.65×
gather outlier 221.4 160.6 251.1 238.0 249.7 228.6 261.2 324.8 1.47× 151.4 0.94× 284.2 1.13× 334.9 1.41× 221.6 0.89× 336.0 1.47× 266.2 1.02×
histogram 565.9 356.5 438.4 372.4 573.6 489.8 724.3 923.5 1.63× 409.8 1.15× 681.2 1.55× 870.2 2.34× 793.9 1.38× 714.9 1.46× 569.7 0.79×
Huffman encode 58.3 107.7 111.2 120.5 123.2 161.1 110.8 174.6 2.99× 121.6 1.13× 206.0 1.85× 217.2 1.80× 202.2 1.64× 201.6 1.25× 198.4 1.79×
overall, compress 42.1 44.8 49.3 53.9 52.5 62.2 56.9 84.1 2.00× 51.5 1.15× 82.2 1.67× 92.4 1.72× 76.4 1.46× 87.6 1.41× 79.5 1.40×

Huffman decode 42.1 37.9 45.8 66.8 48.9 42.7 44.6 48.5 1.15× 26.6 0.70× 51.8 1.13× 91.2 1.37× 56.0 1.15× 50.1 1.17× 49.0 1.10×
scatter outlier 225.0 334.8 628.1 359.7 440.2 679.1 347.1 658.4 2.93× 630.2 1.88× 918.3 1.46× 797.4 2.22× 906.6 2.06× 1066.8 1.57× 782.8 2.26×
Lorenzo reconstruct 308.7 267.0 200.1 251.7 201.3 245.3 255.5 504.4 1.63× 495.3 1.86× 345.5 1.73× 398.6 1.58× 335.6 1.67× 386.9 1.58× 384.0 1.50×
overall, decompress 31.8 30.2 35.2 46.0 36.1 34.5 34.2 41.4 1.30× 24.3 0.80× 43.0 1.22× 67.9 1.47× 45.6 1.26× 42.6 1.23× 41.2 1.20×

TABLE VII: Evaluation of CUSZ+ using default compression workflow (Lorenzo and multi-byte VLE) with relative error bound of 10−4 on
V100 and A100: breakdown throughput of compression subprocedures.

naturally and shows a speedup of higher than 2×, the multi-byte
Huffman decoding exhibits a stagnation in scaling up, resulting
in a marginal improvement of the overall decompression per-
formance.

VI. RELATED WORK

Compression for scientific datasets has been studied for years
to reduce the storage burden and I/O overhead. Scientific data
compression techniques fall into two classes: lossless compres-
sion and lossy compression. The former includes the generic
lossless compressors such as Zlib [35] and Zstd [18], as well
as the specific algorithm designed for floating-point values
such as FPZIP [36] and FPC [37]. The lossless compressors,
however, all suffer from very low compression ratios (generally
2:1 or even lower [6]) because of the somewhat random ending
mantissa bits in the floating-point representation.

Lossy compressors have been studied for decades. The tra-
ditional lossy compressors (such as JPEG [38] and JPEG2000
[39]) are designed for 2D images, which are not suitable for
scientific datasets. The key reason is that the traditional lossy
compressors focus on the visual quality while scientific appli-
cations care more about the post hoc analysis results beyond the
simple visualization purpose.

To address the above-mentioned gap, error-bounded lossy
compressors [8, 9, 10, 11, 40] have been proposed for years.
Based on their design principle, they can be split into two
categories - prediction-based model [3, 8, 9] and transform-
based model [10, 40, 41]. The typical example in the former
category is SZ, which supports different categories of errors to
control data distortion, such as absolute error bound, relative
error bound, and peak signal-to-noise ratio (PSNR). The typical
example in the latter category is ZFP, which supports absolute
error bound and precision mode6.

However, all the above existing lossless and lossy com-
pressors cannot run on GPUs directly. Recently, both the SZ
team and the ZFP team released their CUDA versions, called
CUSZ [13] and cuZFP [14], respectively. Both versions provide
much higher throughputs for compression and decompression
compared with their CPU versions. Compared with CUSZ,
cuZFP provides slightly higher compression throughput, but it

6In the precision mode, users can use an integer number to control the data
distortion. Higher precision in value means lower data distortion.

only supports fixed-rate mode, significantly limiting its adop-
tion in practice. In comparison with the two existing GPU-
supported compressors, our designed new compression method
is aware of the compressibility of the datasets, such that it can
adopt the run-length encoding (RLE) method to significantly
improve the compression ratios when needed.

VII. CONCLUSION AND FUTURE WORK

In this work, we propose CUSZ+, a compressibility-aware
GPU-based lossy compressor for NVIDIA GPU architectures,
which can effectively improve the compression throughput
over CUSZ. Specifically, we propose an efficient compres-
sion method to adaptively perform run-length encoding and/or
Huffman encoding by considering data smoothness to improve
the compression ratio over CUSZ. We prove that the Lorenzo
reconstruction in decompression is equivalent to a multidimen-
sional partial-sum computation and develop an efficient fine-
grained Lorenzo reconstruction algorithm on GPUs. Moreover,
we carefully optimize CUSZcompression kernels by leveraging
different techniques for CUDA architectures. Finally, we eval-
uate CUSZ+ using seven real-world HPC application datasets
on the most advanced GPUs (V100 and A100) and compare
with CUSZ, the GPU-centric error-bounded lossy compressor.
Experiments show that our CUSZ+ improves CUSZ’s decom-
pression kernel throughput by up to 1.6× with the same com-
pression quality on state-of-the-art GPUs, including A100.

In the future, we plan to optimize the performance of decom-
pression further, implement other data prediction methods such
as linear-regression-based predictors and evaluate the perfor-
mance improvements of parallel I/O with CUSZ.

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing
Project (ECP), Project Number: 17-SC-20-SC, a collaborative
effort of two DOE organizations—the Office of Science and
the National Nuclear Security Administration, responsible for
the planning and preparation of a capable exascale ecosystem,
including software, applications, hardware, advanced system
engineering, and early testbed platforms, to support the nation’s
exascale computing imperative. The material was supported by
the U.S. Department of Energy, Office of Science, under con-
tract DE-AC02-06CH11357. This work was also supported by
the National Science Foundation under Grants OAC-2042084,
OAC-2034169, OAC-2003709, and CCF-1619253.

10

REFERENCES

[1] S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, K. Heitmann,
K. Kumaran, V. Vishwanath, T. Peterka, J. Insley, et al., “HACC:
Extreme scaling and performance across diverse architectures,” Com-
munications of the ACM, vol. 60, no. 1, pp. 97–104, 2016.

[2] S. C. V. Vishwanath and K. Harms, Parallel i/o on mira, https://www.
alcf.anl.gov/files/Parallel IO on Mira 0.pdf, Online, 2019.

[3] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello,
“Error-controlled lossy compression optimized for high compression
ratios of scientific datasets,” in 2018 IEEE International Conference
on Big Data (Big Data), Seattle, WA, USA: IEEE, 2018, pp. 438–447.

[4] X. Liang, S. Di, D. Tao, Z. Chen, and F. Cappello, “An efficient
transformation scheme for lossy data compression with point-wise
relative error bound,” in IEEE International Conference on Cluster
Computing (CLUSTER), Belfast, UK: IEEE, 2018, pp. 179–189.

[5] D. Meister, J. Kaiser, A. Brinkmann, T. Cortes, M. Kuhn, and J.
Kunkel, “A study on data deduplication in HPC storage systems,” in SC
’12: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, Salt Lake City, UT,
USA: IEEE, 2012, p. 7.

[6] S. W. Son, Z. Chen, W. Hendrix, A. Agrawal, W.-k. Liao, and
A. Choudhary, “Data compression for the exascale computing era-
survey,” Supercomputing Frontiers and Innovations, vol. 1, no. 2,
pp. 76–88, 2014.

[7] F. Cappello, S. Di, S. Li, X. Liang, A. M. Gok, D. Tao, C. H. Yoon,
X.-C. Wu, Y. Alexeev, and F. T. Chong, “Use cases of lossy compres-
sion for floating-point data in scientific data sets,” The International
Journal of High Performance Computing Applications, vol. 33, no. 6,
pp. 1201–1220, 2019.

[8] S. Di and F. Cappello, “Fast error-bounded lossy HPC data compres-
sion with SZ,” in 2016 IEEE International Parallel and Distributed
Processing Symposium, Chicago, IL, USA: IEEE, 2016, pp. 730–739.

[9] D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving lossy
compression for scientific data sets based on multidimensional pre-
diction and error-controlled quantization,” in 2017 IEEE International
Parallel and Distributed Processing Symposium, Orlando, FL, USA:
IEEE, 2017, pp. 1129–1139.

[10] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE
Transactions on Visualization and Computer Graphics, vol. 20, no. 12,
pp. 2674–2683, 2014.

[11] P. Lindstrom and M. Isenburg, “Fast and efficient compression of
floating-point data,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 5, pp. 1245–1250, 2006.

[12] https://lcls.slac.stanford.edu/lasers/lcls-ii, Online.
[13] J. Tian, S. Di, K. Zhao, C. Rivera, M. H. Fulp, R. Underwood, S. Jin,

X. Liang, J. Calhoun, D. Tao, et al., “Cusz: An efficient gpu-based
error-bounded lossy compression framework for scientific data,” in
Proceedings of the ACM International Conference on Parallel Archi-
tectures and Compilation Techniques, 2020, pp. 3–15.

[14] cuZFP, https : / / github. com / LLNL / zfp / tree / develop / src / cuda zfp,
Online, 2019.

[15] J. Tian, C. Rivera, S. Di, J. Chen, X. Liang, D. Tao, and F. Cap-
pello, “Revisiting huffman coding: Toward extreme performance on
modern gpu architectures,” in 2021 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), Portland, OR, USA, May
17-21, 2021, IEEE, 2021, pp. 881–891.

[16] Nvidia/cub: Cooperative primitives for cuda c++. https://github.com/
NVIDIA/cub.

[17] Scientific Data Reduction Benchmarks, https : / / sdrbench .github. io/,
Online, 2019.

[18] Zstd, https://github.com/facebook/zstd/releases, Online, 2019.
[19] K. Zhao, S. Di, M. Dmitriev, T.-L. D. Tonellot, Z. Chen, and F.

Cappello, “Optimizing error-bounded lossy compression for scientific
data by dynamic spline interpolation,” in 2021 IEEE 37th International
Conference on Data Engineering (ICDE), IEEE, 2021, pp. 1643–1654.

[20] Nvcomp, https : / / github . com / NVIDIA / nvcomp, (Accessed on
05/19/2021).

[21] A. H. Robinson and C. Cherry, “Results of a prototype television
bandwidth compression scheme,” Proceedings of the IEEE, vol. 55,
no. 3, pp. 356–364, 1967. DOI: 10.1109/PROC.1967.5493.

[22] N. Cressie and D. M. Hawkins, “Robust estimation of the variogram:
I,” Journal of the International Association for Mathematical Geology,
vol. 12, no. 2, pp. 115–125, 1980.

[23] O. Johnsen, “On the redundancy of binary huffman codes (corresp.),”
IEEE Transactions on Information Theory, vol. 26, no. 2, pp. 220–222,
1980, ISSN: 1557-9654. DOI: 10.1109/TIT.1980.1056158.

[24] R. Gallager, “Variations on a theme by huffman,” IEEE Transactions
on Information Theory, vol. 24, no. 6, pp. 668–674, 1978. DOI: 10 .
1109/TIT.1978.1055959.

[25] Theta/thetagpu - argonne leadership computing facility, https://www.
alcf.anl.gov/support-center/theta/theta-thetagpu-overview, (Accessed
on 05/21/2021).

[26] Longhorn - texas advanced computing center, https://www.tacc.utexas.
edu/systems/longhorn, (Accessed on 03/15/2021).

[27] Community Earth System Model (CESM) Atmosphere Model, http :
//www.cesm.ucar.edu/models/, Online, 2019.

[28] Hurricane ISABEL Simulation Data, http : / / vis . computer . org /
vis2004contest/data.html, Online, 2019.

[29] NYX simulation, https://amrex-astro.github.io/Nyx/, Online.
[30] Miranda Radiation Hydrodynamics Data, https : / / wci . llnl . gov /

simulation/computer-codes/miranda, Online, 2019.
[31] QMCPACK: many-body ab initio Quantum Monte Carlo code, http :

//vis.computer.org/vis2004contest/data.html, Online, 2019.
[32] D. Tao, S. Di, X. Liang, Z. Chen, and F. Cappello, “Optimizing lossy

compression rate-distortion from automatic online selection between
SZ and ZFP,” IEEE Transactions on Parallel and Distributed Systems,
vol. 30, no. 8, pp. 1857–1871, 2019.

[33] X. Liang, S. Di, D. Tao, S. Li, B. Nicolae, Z. Chen, and F. Cappello,
“Improving performance of data dumping with lossy compression
for scientific simulation,” in 2019 IEEE International Conference on
Cluster Computing (CLUSTER), Albuquerque, NM, USA: IEEE, 2019,
pp. 1–11.

[34] J. Gómez-Luna, J. M. González-Linares, J. I. Benavides, and N. Guil,
“An optimized approach to histogram computation on gpu,” Machine
Vision and Applications, vol. 24, no. 5, pp. 899–908, 2013.

[35] L. P. Deutsch, GZIP file format specification version 4.3, 1996.
[36] P. Lindstrom and M. Isenburg, “Fast and efficient compression of

floating-point data,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 5, pp. 1245–1250, 2006.

[37] M. Burtscher and P. Ratanaworabhan, “FPC: A high-speed compressor
for double-precision floating-point data,” IEEE Transactions on Com-
puters, vol. 58, no. 1, pp. 18–31, 2008.

[38] G. K. Wallace, “The JPEG still picture compression standard,” IEEE
Transactions on Consumer Electronics, vol. 38, no. 1, pp. xviii–xxxiv,
1992.

[39] D. Taubman and M. Marcellin, JPEG2000 image compression fun-
damentals, standards and practice: image compression fundamentals,
standards and practice. Boston, MA, USA: Springer Science & Busi-
ness Media, 2012, vol. 642.

[40] N. Sasaki, K. Sato, T. Endo, and S. Matsuoka, “Exploration of lossy
compression for application-level checkpoint/restart,” in 2015 IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS),
Hyderabad, India: IEEE, 2015, pp. 914–922.

[41] J. Clyne, P. Mininni, A. Norton, and M. Rast, “Interactive desktop
analysis of high resolution simulations: Application to turbulent plume
dynamics and current sheet formation,” New Journal of Physics, vol. 9,
no. 301, pp. 1–29, 2007.

11

https://www.alcf.anl.gov/files/Parallel_IO_on_Mira_0.pdf
https://www.alcf.anl.gov/files/Parallel_IO_on_Mira_0.pdf
https://lcls.slac.stanford.edu/lasers/lcls-ii
https://github.com/LLNL/zfp/tree/develop/src/cuda_zfp
https://github.com/NVIDIA/cub
https://github.com/NVIDIA/cub
https://sdrbench.github.io/
https://github.com/facebook/zstd/releases
https://github.com/NVIDIA/nvcomp
https://doi.org/10.1109/PROC.1967.5493
https://doi.org/10.1109/TIT.1980.1056158
https://doi.org/10.1109/TIT.1978.1055959
https://doi.org/10.1109/TIT.1978.1055959
https://www.alcf.anl.gov/support-center/theta/theta-thetagpu-overview
https://www.alcf.anl.gov/support-center/theta/theta-thetagpu-overview
https://www.tacc.utexas.edu/systems/longhorn
https://www.tacc.utexas.edu/systems/longhorn
http://www.cesm.ucar.edu/models/
http://www.cesm.ucar.edu/models/
http://vis.computer.org/vis2004contest/data.html
http://vis.computer.org/vis2004contest/data.html
https://amrex-astro.github.io/Nyx/
https://wci.llnl.gov/simulation/computer-codes/miranda
https://wci.llnl.gov/simulation/computer-codes/miranda
http://vis.computer.org/vis2004contest/data.html
http://vis.computer.org/vis2004contest/data.html

	Introduction
	Background and Research Motivation
	Background of cuSZ
	Research Motivations
	Limitation of cuSZ's Compression Ratio
	Limitation of cuSZ's Decompression Performance
	Importance of Lorenzo Predictor

	Compressibility-Aware Framework on GPU
	Compressibility
	Source of Compressibility
	Reference Compression Ratio
	Data Feature Awareness

	Smoothness and Run-Length Encoding
	Estimation from Histogram
	Modeling RLE Compressibility

	Performance Optimization
	Compression Optimization
	Dual-Quantization
	Generality
	Computational Efficiency

	Compression Kernel Enhancement

	Decompression Optimization
	The Modified Quantization Scheme
	Partial-Sum Lorenzo Reconstruction
	Computation

	Implementation Detail
	1D Implementation
	2D Implementation
	3D Implementation

	Experimental Evaluation
	Experimental Setup
	Evaluation Platform
	Baselines
	Test Datasets

	Evaluation on Compression Ratio
	Evaluation on Performance and Scalability
	Evaluation on Optimized Kernels
	Evaluation on Default Compression Workflow

	Related Work
	Conclusion and Future Work

